M1.	(a)	enthalpy change/ heat energy change when 1 mol of a substance	1
	is c	ompletely burned in oxygen	1
	at 2	98K and 100 kPa or standard conditions	1
		(not 1atm)	_

(b)	$\Delta H = \sum$ bonds broken – \sum bonds formed	1
	= (6 × 412) + 612 +348 + (4.5 × 496) – ((6 × 743) + (6 × 463))	1
	= – 1572 kJ mol⁻¹	1

(c)	by definition $\Delta H_{\rm f}$ is formation from an element	1	
(d)	$\Delta H_c = \sum \Delta H_t$ products - $\sum \Delta H_t$ reactants or cycle	1	
	= (3 × - 394) + (3 × -242) - (+20)	1	
	= − 1928 kJ mol ⁻¹	1	
(e)	bond enthalpies are mean/average values	1	
	from a range of compounds	1	[12]

M2.		(a)	enthalpy (or energy) to break (or dissociate) a bond;	1
		averaged over different molecules (environments);		
		ent	halpy (or heat energy) change when one mole of a compound;	1
		is formed from its elements;		
	in their standard states; (b) enthalpy change = Σ (bonds broken) – Σ (bonds formed) or cycle; = 4 × 388 +163 + 2 × 146 + 4 × 463 – (944 + 8 × 463); (or similar)			1
				1
				1
		= -7	'89; (+ 789 scores 1 only)	1
	(c)	(i)	zero;	1
		(ii)	$AH = \Sigma$ (enthalpies of formation of products) - Σ (enthalpies of formation of reactants)	1
			= 4 × –242-(75 + 2 × –133);	1
			= –777; (+ 777 scores one only)	1
	(d)	mea	an bond enthalpies are not exact (or indication that actual values are different from real values)	1

[13]

M3.		(a)	$\Delta H = \Sigma$ (bonds broken) – Σ (bonds formed) (or cycle)	1
			= +146 – 496/2 (or 2 × 463 + 146 –(2 × 463 + 496/2)	1
			= – 102 (kJ mol ⁻¹) (1) (accept no units, wrong units loses a mark; +102 scores (1) only)	1
	(b)	C(s) + $2H_2(g) \rightarrow CH_4(g)$ equation (1) Correct state symbols (1)	2
	(c)	(i)	Macromolecular (accept giant molecule or carbon has many (4) bonds)	1
		(ii)	$\Delta H = \Sigma \Delta H_{f}(\text{products}) - \Sigma \Delta H_{f}(\text{reactants}) \text{ (or cycle)}$	1
			= 715 + 4 × 218 – (–74.9)	1
			= 1662 (kJ mol⁻¹)	
			(accept no units, wrong units loses one mark, allow 1660 to 1663, –1662 scores one mark only)	1
		(iii)	1662/4 = 415.5	
		()	(mark is for divide by four, allow if answer to (c)(ii) is wrong)	1

M4.D

[10]

M5. (a) (Energy required) to break a given <u>covalent</u> bond (1) averaged over a range of compounds (1) *Penalise first mark if 'energy' / 'enthalpy' evolved*

2

- (b) (i) $4 \times C-H = 4 \times 413 = +1652$ $1 \times C-C = 1 \times 347 = 347$ $1 \times C=0 = 1 \times 736 = 736$ $2\frac{1}{2} \times O=0 = 2.5 \times 498 = 1245$ (1) = 2735 + 1245 = +3980 (1) first mark for 4 : 1: 1 or 2735 ignore sign
 - (ii) $4 \times H-O = -4 \times 464 = -1856$ $4 \times C-O = -4 \times 736 = -2944$ (1) = -4800 (1) First mark for 4 : 4
 - (iii) $\Delta H_{R} = \Sigma Bonds broken \Sigma Bonds made$ = +3980 - 4800 = -820 (1)Conseq Mark for incorrect answers in (i) and (ii) as(i) Answer + (ii) Answer =

5

[7]

M6.(a) Enthalpy (Energy) to break a (covalent) bond (1) OR dissociation energy Varies between compounds so average value used (1) QL mark

OR average of dissociation energies in a single molecule / e.g. CH₄ Do not allow mention of energy to form bonds but with this case can allow second mark otherwise 2nd mark consequential on first

2

(b) (i) $1/2 N_2 + 3/2 H_2 \rightarrow NH_3$ (1)

Ignore s s

 (ii) ΔH = (Σ)bonds broken - (Σ)bonds formed (1) = 1/2 × 944 + 3/2 × 436 - 3 × 388 (1) = -38 kJ mol⁻¹ (1) Ignore no units, penalise wrong units Score 2/3 for -76 1/3 for +38 Allow 1/3 for +76

4

(c) 4 (C-H) + (C=C) + (H-H) - (6 (C-H) + (C-C)) = -136 (1) OR (C=C) + (H-H) - ((C-C) + 2 (C-H)) = -136 2 (C-H) = 836 (1) (C-H) = 418 (kJ mol⁻¹) (1) Note: allow (1) for -836 another (1) for -418

[9]

3